Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen.

Identifieur interne : 000102 ( Main/Exploration ); précédent : 000101; suivant : 000103

Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen.

Auteurs : Pia Guadalupe Dominguez [Suède] ; Evgeniy Donev [Suède] ; Marta Derba-Maceluch [Suède] ; Anne Bünder [Suède] ; Mattias Hedenström [Suède] ; Ivana Tomášková [République tchèque] ; Ewa J. Mellerowicz [Suède] ; Totte Niittyl [Suède]

Source :

RBID : pubmed:32491203

Abstract

Despite the ecological and industrial importance of biomass accumulation in wood, the control of carbon (C) allocation to this tissue and to other tree tissues remain poorly understood. We studied sucrose synthase (SUS) to clarify its role in biomass formation and C metabolism at the whole tree level in hybrid aspen (Populus tremula × tremuloides). To this end, we analysed source leaves, phloem, developing wood, and roots of SUSRNAi trees using a combination of metabolite profiling, 13 CO2 pulse labelling experiments, and long-term field experiments. The glasshouse grown SUSRNAi trees exhibited a mild stem phenotype together with a reduction in wood total C. The 13 CO2 pulse labelling experiments showed an alteration in the C flow in all the analysed tissues, indicating that SUS affects C metabolism at the whole tree level. This was confirmed when the SUSRNAi trees were grown in the field over a 5-yr period; their stem height, diameter and biomass were substantially reduced. These results establish that SUS influences C allocation to developing wood, and that it affects C metabolism at the whole tree level.

DOI: 10.1111/nph.16721
PubMed: 32491203


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen.</title>
<author>
<name sortKey="Dominguez, Pia Guadalupe" sort="Dominguez, Pia Guadalupe" uniqKey="Dominguez P" first="Pia Guadalupe" last="Dominguez">Pia Guadalupe Dominguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Donev, Evgeniy" sort="Donev, Evgeniy" uniqKey="Donev E" first="Evgeniy" last="Donev">Evgeniy Donev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Derba Maceluch, Marta" sort="Derba Maceluch, Marta" uniqKey="Derba Maceluch M" first="Marta" last="Derba-Maceluch">Marta Derba-Maceluch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bunder, Anne" sort="Bunder, Anne" uniqKey="Bunder A" first="Anne" last="Bünder">Anne Bünder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hedenstrom, Mattias" sort="Hedenstrom, Mattias" uniqKey="Hedenstrom M" first="Mattias" last="Hedenström">Mattias Hedenström</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Umeå University, Umeå, 90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Umeå University, Umeå, 90187</wicri:regionArea>
<wicri:noRegion>90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tomaskova, Ivana" sort="Tomaskova, Ivana" uniqKey="Tomaskova I" first="Ivana" last="Tomášková">Ivana Tomášková</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00</wicri:regionArea>
<wicri:noRegion>165 00</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32491203</idno>
<idno type="pmid">32491203</idno>
<idno type="doi">10.1111/nph.16721</idno>
<idno type="wicri:Area/Main/Corpus">000272</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000272</idno>
<idno type="wicri:Area/Main/Curation">000272</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000272</idno>
<idno type="wicri:Area/Main/Exploration">000272</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen.</title>
<author>
<name sortKey="Dominguez, Pia Guadalupe" sort="Dominguez, Pia Guadalupe" uniqKey="Dominguez P" first="Pia Guadalupe" last="Dominguez">Pia Guadalupe Dominguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Donev, Evgeniy" sort="Donev, Evgeniy" uniqKey="Donev E" first="Evgeniy" last="Donev">Evgeniy Donev</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Derba Maceluch, Marta" sort="Derba Maceluch, Marta" uniqKey="Derba Maceluch M" first="Marta" last="Derba-Maceluch">Marta Derba-Maceluch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bunder, Anne" sort="Bunder, Anne" uniqKey="Bunder A" first="Anne" last="Bünder">Anne Bünder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hedenstrom, Mattias" sort="Hedenstrom, Mattias" uniqKey="Hedenstrom M" first="Mattias" last="Hedenström">Mattias Hedenström</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Umeå University, Umeå, 90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Umeå University, Umeå, 90187</wicri:regionArea>
<wicri:noRegion>90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tomaskova, Ivana" sort="Tomaskova, Ivana" uniqKey="Tomaskova I" first="Ivana" last="Tomášková">Ivana Tomášková</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00</wicri:regionArea>
<wicri:noRegion>165 00</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183</wicri:regionArea>
<wicri:noRegion>90183</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Despite the ecological and industrial importance of biomass accumulation in wood, the control of carbon (C) allocation to this tissue and to other tree tissues remain poorly understood. We studied sucrose synthase (SUS) to clarify its role in biomass formation and C metabolism at the whole tree level in hybrid aspen (Populus tremula × tremuloides). To this end, we analysed source leaves, phloem, developing wood, and roots of SUSRNAi trees using a combination of metabolite profiling,
<sup>13</sup>
CO
<sub>2</sub>
pulse labelling experiments, and long-term field experiments. The glasshouse grown SUSRNAi trees exhibited a mild stem phenotype together with a reduction in wood total C. The
<sup>13</sup>
CO
<sub>2</sub>
pulse labelling experiments showed an alteration in the C flow in all the analysed tissues, indicating that SUS affects C metabolism at the whole tree level. This was confirmed when the SUSRNAi trees were grown in the field over a 5-yr period; their stem height, diameter and biomass were substantially reduced. These results establish that SUS influences C allocation to developing wood, and that it affects C metabolism at the whole tree level.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32491203</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16721</ELocationID>
<Abstract>
<AbstractText>Despite the ecological and industrial importance of biomass accumulation in wood, the control of carbon (C) allocation to this tissue and to other tree tissues remain poorly understood. We studied sucrose synthase (SUS) to clarify its role in biomass formation and C metabolism at the whole tree level in hybrid aspen (Populus tremula × tremuloides). To this end, we analysed source leaves, phloem, developing wood, and roots of SUSRNAi trees using a combination of metabolite profiling,
<sup>13</sup>
CO
<sub>2</sub>
pulse labelling experiments, and long-term field experiments. The glasshouse grown SUSRNAi trees exhibited a mild stem phenotype together with a reduction in wood total C. The
<sup>13</sup>
CO
<sub>2</sub>
pulse labelling experiments showed an alteration in the C flow in all the analysed tissues, indicating that SUS affects C metabolism at the whole tree level. This was confirmed when the SUSRNAi trees were grown in the field over a 5-yr period; their stem height, diameter and biomass were substantially reduced. These results establish that SUS influences C allocation to developing wood, and that it affects C metabolism at the whole tree level.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dominguez</LastName>
<ForeName>Pia Guadalupe</ForeName>
<Initials>PG</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0413-2273</Identifier>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Donev</LastName>
<ForeName>Evgeniy</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7279-0481</Identifier>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Derba-Maceluch</LastName>
<ForeName>Marta</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-8034-3630</Identifier>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bünder</LastName>
<ForeName>Anne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hedenström</LastName>
<ForeName>Mattias</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0903-6662</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Umeå University, Umeå, 90187, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tomášková</LastName>
<ForeName>Ivana</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6219-5980</Identifier>
<AffiliationInfo>
<Affiliation>Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mellerowicz</LastName>
<ForeName>Ewa J</ForeName>
<Initials>EJ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6817-1031</Identifier>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niittylä</LastName>
<ForeName>Totte</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8029-1503</Identifier>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Stiftelsen för Strategisk Forskning</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Svenska Forskningsrådet Formas</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Bio4Energy</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Vinnova</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Swedish Research Council</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus </Keyword>
<Keyword MajorTopicYN="N">13C labelling</Keyword>
<Keyword MajorTopicYN="N">aspen</Keyword>
<Keyword MajorTopicYN="N">biomass</Keyword>
<Keyword MajorTopicYN="N">carbon allocation</Keyword>
<Keyword MajorTopicYN="N">sucrose synthase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32491203</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16721</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Ainsworth EA, Bush DR. 2011. Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiology 155: 64-69.</Citation>
</Reference>
<Reference>
<Citation>Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP. 1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proceedings of the National Academy of Sciences, USA 92: 9353-9357.</Citation>
</Reference>
<Reference>
<Citation>Baker NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59: 89-113.</Citation>
</Reference>
<Reference>
<Citation>Baroja-Fernández E, Muñoz FJ, Montero M, Etxeberria E, Sesma MT, Ovecka M, Bahaji A, Ezquer I, Li J, Prat S et al. 2009. Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant & Cell Physiology 50: 1651-1662.</Citation>
</Reference>
<Reference>
<Citation>Beshir WF, Mbong VBM, Hertog MLATM, Geeraerd AH, Van Den Ende W, Nicolaï BM. 2017. Dynamic labeling reveals temporal changes in carbon re-allocation within the central metabolism of developing apple fruit. Frontiers in Plant Science 8: 1-16.</Citation>
</Reference>
<Reference>
<Citation>Busov VB. 2018. Manipulation of growth and architectural characteristics in trees for increased woody biomass production. Frontiers in Plant Science 871: 1-8.</Citation>
</Reference>
<Reference>
<Citation>Chaffey N, Barlow P. 2001. The cytoskeleton facilitates a three-dimensional symplasmic continuum in the long-lived ray and axial parenchyma cells of angiosperm trees. Planta 213: 811-823.</Citation>
</Reference>
<Reference>
<Citation>Cheng WH, Talierclo EW, Chourey PS. 1996. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8: 971-983.</Citation>
</Reference>
<Reference>
<Citation>Coleman HD, Ellis DD, Gilbert M, Mansfield SD. 2006. Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnology Journal 4: 87-101.</Citation>
</Reference>
<Reference>
<Citation>Coleman HD, Yan J, Mansfield SD. 2009. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proceedings of the National Academy of Sciences, USA 106: 13118-13123.</Citation>
</Reference>
<Reference>
<Citation>D'Aoust MA, Yelle S, Nguyen-Quoc B. 1999. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11: 2407-2418.</Citation>
</Reference>
<Reference>
<Citation>Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R. 2014. Nonstructural carbon in woody plants. Annual Review of Plant Biology 65: 667-687.</Citation>
</Reference>
<Reference>
<Citation>Dubouzet JG, Strabala TJ, Wagner A. 2013. Potential transgenic routes to increase tree biomass. Plant Science 212: 72-101.</Citation>
</Reference>
<Reference>
<Citation>Fernie AR, Morgan JA. 2013. Analysis of metabolic flux using dynamic labelling and metabolic modelling. Plant, Cell & Environment 36: 1738-1750.</Citation>
</Reference>
<Reference>
<Citation>Gandla ML, Derba-Maceluch M, Liu X, Gerber L, Master ER, Mellerowicz EJ, Jönsson LJ. 2015. Expression of a fungal glucuronoyl esterase in populus: effects on wood properties and saccharification efficiency. Phytochemistry 112: 210-220.</Citation>
</Reference>
<Reference>
<Citation>Gerber L, Zhang B, Roach M, Rende U, Gorzsás A, Kumar M, Burgert I, Niittylä T, Sundberg B. 2014. Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers. New Phytologist 203: 1220-1230.</Citation>
</Reference>
<Reference>
<Citation>Gullberg J, Jonsson P, Nordström A, Sjöström M, Moritz T. 2004. Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry 331: 283-295.</Citation>
</Reference>
<Reference>
<Citation>Haigler C, Ivanova-Datcheva M, Hogan P, Salnikov V, Hwang S, Martin K, Delmer D. 2001. Carbon partitioning to cellulose synthesis. Plant Molecular Biology 47: 29-51.</Citation>
</Reference>
<Reference>
<Citation>Hedenström M, Wiklund-Lindström S, Öman T, Lu F, Gerber L, Schatz P, Sundberg B, Ralph J. 2009. Identification of lignin and polysaccharide modifications in populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls. Molecular Plant 2: 933-942.</Citation>
</Reference>
<Reference>
<Citation>Hubbard NL, Huber SC, Pharr DM. 1989. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiology 91: 1527-1534.</Citation>
</Reference>
<Reference>
<Citation>Kim H, Ralph J, Akiyama T. 2008. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6. BioEnergy Research 1: 56-66.</Citation>
</Reference>
<Reference>
<Citation>Kruger N, Le Lay P, Ratcliffe R. 2007. Vacuolar compartmentation complicates the steady-state analysis of glucose metabolism and forces reappraisal of sucrose cycling in plants. Phytochemistry 68: 2189-2196.</Citation>
</Reference>
<Reference>
<Citation>Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L et al. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science 4: 1-21.</Citation>
</Reference>
<Reference>
<Citation>Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong J, Xiao L, Zhang H. 2013. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnology Journal 11: 1080-1091.</Citation>
</Reference>
<Reference>
<Citation>Lindén P, Keech O, Stenlund H, Gardeström P, Moritz T. 2016. Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by 13C labelling. Journal of Experimental Botany 67: 3123-3135.</Citation>
</Reference>
<Reference>
<Citation>Mahboubi A, Linden P, Hedenström M, Moritz T, Niittylä T. 2015. 13C tracking after 13CO2 supply revealed diurnal patterns of wood formation in aspen. Plant Physiology 168: 478-489.</Citation>
</Reference>
<Reference>
<Citation>Mahboubi A, Niittylä T. 2018. Sucrose transport and carbon fluxes during wood formation. Physiologia Plantarum 164: 67-81.</Citation>
</Reference>
<Reference>
<Citation>Mahboubi A, Ratke C, Gorzsás A, Kumar M, Mellerowicz EJ, Niittylä T. 2013. Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers. Plant Physiology 163: 1729-1740.</Citation>
</Reference>
<Reference>
<Citation>Maxwell K, Johnson G. 2000. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51: 659-668.</Citation>
</Reference>
<Reference>
<Citation>Morey SR, Hirose T, Hashida Y, Miyao A, Hirochika H, Ohsugi R, Yamagishi J, Aoki N. 2018. Genetic evidence for the role of a rice vacuolar invertase as a molecular sink strength determinant. Rice 11: 6.</Citation>
</Reference>
<Reference>
<Citation>Nguyen-Quoc B, Krivitzky M, Huber SC, Lecharny A. 1990. Sucrose synthase in developing maize leaves: regulation of activity by protein level during the import to export transition. Plant Physiology 94: 516-523.</Citation>
</Reference>
<Reference>
<Citation>Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CRD, Benedict C, Dervinis C, Yu Q, Sykes R, Davis M et al. 2009. Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytologist 182: 878-890.</Citation>
</Reference>
<Reference>
<Citation>Pavlinova OA, Balakhontsev EN, Prasolova MF, Turkina MV. 2002. Sucrose-phosphate synthase, sucrose synthase, and invertase in sugar beet leaves. Russian Journal of Plant Physiology 49: 68-73.</Citation>
</Reference>
<Reference>
<Citation>Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: 45e-45.</Citation>
</Reference>
<Reference>
<Citation>Plomion C, Leprovost G, Stokes A. 2001. Wood formation in trees. Plant Physiology 127: 1513-1523.</Citation>
</Reference>
<Reference>
<Citation>Qiu QS, Hardin SC, Mace J, Brutnell TP, Huber SC. 2007. Light and metabolic signals control the selective degradation of sucrose synthase in maize leaves during deetiolation. Plant Physiology 144: 468-478.</Citation>
</Reference>
<Reference>
<Citation>Rende, U, Wang, W, Gandla, ML, Jönsson, LJ & Niittylä, T (2016) Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. New Phytologist 214 796-807.</Citation>
</Reference>
<Reference>
<Citation>Rende U, Wang W, Gandla ML, Jönsson LJ, Niittylä T. 2017. Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. New Phytologist 214: 796-807.</Citation>
</Reference>
<Reference>
<Citation>Rennie EA, Turgeon R. 2009. A comprehensive picture of phloem loading strategies. Proceedings of the National Academy of Sciences, USA 106: 14162-14167.</Citation>
</Reference>
<Reference>
<Citation>Ricard B, VanToai T, Chourey P, Saglio P. 1998. Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiology 116: 1323-1331.</Citation>
</Reference>
<Reference>
<Citation>Roach M, Arrivault S, Mahboubi A, Krohn N, Sulpice R, Stitt M, Niittylä T. 2017. Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood. Journal of Experimental Botany 68: 3529-3539.</Citation>
</Reference>
<Reference>
<Citation>Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 57: 675-709.</Citation>
</Reference>
<Reference>
<Citation>Ruan Y-L. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology 65: 33-67.</Citation>
</Reference>
<Reference>
<Citation>Schrader S, Sauter JJ. 2002. Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus x canadensis Moench ‘robusta’) and their possible role in carbohydrate metabolism. Journal of Plant Physiology 159: 833-843.</Citation>
</Reference>
<Reference>
<Citation>Sheen J. 1990. Metabolic repression of transcription in higher plants. Plant Cell 2: 1027-1038.</Citation>
</Reference>
<Reference>
<Citation>Smith AM, Zeeman SC. 2006. Quantification of starch in plant tissues. Nature Protocols 1: 1342-1345.</Citation>
</Reference>
<Reference>
<Citation>Sonnewald U, Fernie AR. 2018. Next-generation strategies for understanding and influencing source-sink relations in crop plants. Current Opinion in Plant Biology 43: 63-70.</Citation>
</Reference>
<Reference>
<Citation>Stein O, Granot D. 2019. An overview of sucrose synthases in plants. Frontiers in Plant Science 10: 1-14.</Citation>
</Reference>
<Reference>
<Citation>Stirbet A, Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology 104: 236-257.</Citation>
</Reference>
<Reference>
<Citation>Szecowka M, Heise R, Tohge T, Nunes-Nesi A, Vosloh D, Huege J, Feil R, Lunn J, Nikoloski Z, Stitt M et al. 2013. Metabolic fluxes in an illuminated Arabidopsis rosette. Plant Cell 25: 694-714.</Citation>
</Reference>
<Reference>
<Citation>Takehara K, Murata K, Yamaguchi T, Yamaguchi K, Chaya G, Kido S, Iwasaki Y, Ogiwara H, Ebitani T, Miura K. 2018. Thermo-responsive allele of sucrose synthase 3 (Sus3) provides high-temperature tolerance during the ripening stage in rice (Oryza sativa L.). Breeding Science 68: 336-342.</Citation>
</Reference>
<Reference>
<Citation>Thirugnanasambandam PP, Mason PJ, Hoang NV, Furtado A, Botha FC, Henry RJ. 2019. Analysis of the diversity and tissue specificity of sucrose synthase genes in the long read transcriptome of sugarcane. BMC Plant Biology 19: 1-14.</Citation>
</Reference>
<Reference>
<Citation>Unda F, Kim H, Hefer C, Ralph J, Mansfield SD. 2017. Altering carbon allocation in hybrid poplar (Populus alba × grandidentata) impacts cell wall growth and development. Plant Biotechnology Journal 15: 865-878.</Citation>
</Reference>
<Reference>
<Citation>Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Research 40: 1-12.</Citation>
</Reference>
<Reference>
<Citation>Van Bel AJE. 1990. Xylem-phloem exchange via the rays: the undervalued route of transport. Journal of Experimental Botany 41: 631-644.</Citation>
</Reference>
<Reference>
<Citation>Wan H, Wu L, Yang Y, Zhou G, Ruan YL. 2018. Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends in Plant Science 23: 163-177.</Citation>
</Reference>
<Reference>
<Citation>Wang H, Sui X, Guo J, Wang Z, Cheng J, Ma S, Li X, Zhang Z. 2014. Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant, Cell & Environment 37: 795-810.</Citation>
</Reference>
<Reference>
<Citation>Wang Z, Winestrand S, Gillgren T, Jönsson LJ. 2018. Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce. Biomass and Bioenergy 109: 125-134.</Citation>
</Reference>
<Reference>
<Citation>Wei Z, Qu Z, Zhang L, Zhao S, Bi Z, Ji X, Wang X, Wei H. 2015. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height. PLoS ONE 10: 1-20.</Citation>
</Reference>
<Reference>
<Citation>Yu SM, Lo SF, Ho THD. 2015. Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science 20: 844-857.</Citation>
</Reference>
<Reference>
<Citation>Zhang C, Han L, Slewinski TL, Sun J, Zhang J, Wang ZY, Turgeon R. 2014. Symplastic phloem loading in poplar. Plant Physiology 166: 306-313.</Citation>
</Reference>
<Reference>
<Citation>Zhang D, Xu B, Yang X, Zhang Z, Li B. 2011. The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genetics and Genomes 7: 443-456.</Citation>
</Reference>
<Reference>
<Citation>Zhu J, Qi J, Fang Y, Xiao X, Li J, Lan J, Tang C. 2018. Characterization of sugar contents and sucrose metabolizing enzymes in developing leaves of Hevea brasiliensis. Frontiers in Plant Science 9: 1-11.</Citation>
</Reference>
<Reference>
<Citation>Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U. 1995. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). The Plant Journal 7: 97-107.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République tchèque</li>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Dominguez, Pia Guadalupe" sort="Dominguez, Pia Guadalupe" uniqKey="Dominguez P" first="Pia Guadalupe" last="Dominguez">Pia Guadalupe Dominguez</name>
</noRegion>
<name sortKey="Bunder, Anne" sort="Bunder, Anne" uniqKey="Bunder A" first="Anne" last="Bünder">Anne Bünder</name>
<name sortKey="Derba Maceluch, Marta" sort="Derba Maceluch, Marta" uniqKey="Derba Maceluch M" first="Marta" last="Derba-Maceluch">Marta Derba-Maceluch</name>
<name sortKey="Donev, Evgeniy" sort="Donev, Evgeniy" uniqKey="Donev E" first="Evgeniy" last="Donev">Evgeniy Donev</name>
<name sortKey="Hedenstrom, Mattias" sort="Hedenstrom, Mattias" uniqKey="Hedenstrom M" first="Mattias" last="Hedenström">Mattias Hedenström</name>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
</country>
<country name="République tchèque">
<noRegion>
<name sortKey="Tomaskova, Ivana" sort="Tomaskova, Ivana" uniqKey="Tomaskova I" first="Ivana" last="Tomášková">Ivana Tomášková</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000102 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000102 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32491203
   |texte=   Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32491203" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020